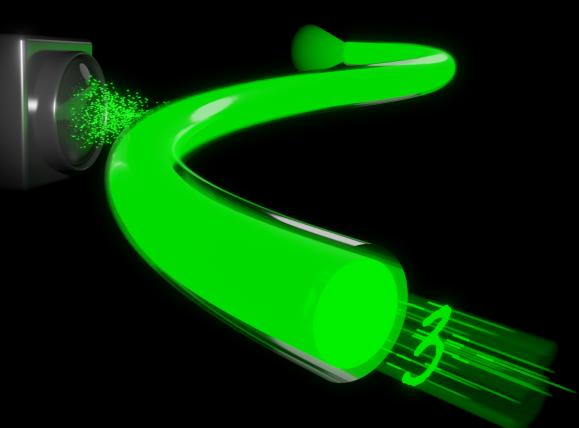
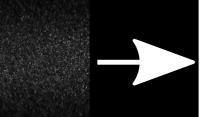
Visual Data Detection Through Side-Scattering in a Multimode Optical Fiber

Daniel Marima, Barak Hadad, Sahar Froim, Avishay Eyal, and Alon Bahabad


Department of Physical Electronics, School of Electrical Engineering, Fleischman Faculty of Engineering, Tel-Aviv University, Israel

Abstract


Light propagation in optical fibers is accompanied by random omnidirectional scattering. The small fraction of coherent guided light that escapes outside the cladding of the fiber forms a speckle pattern. Here, visual information imaged into the input facet of a multimode fiber with a transparent buffer is retrieved, using a convolutional neural network, from the side-scattered light at several locations along the fiber. This demonstration can promote the development of distributed optical imaging systems and optical links

The Optical System

Principle of Visual Data Reconstruction

Capture the side-scattered speckle pattern

Convolutional

neural network Obtain the prediction

Features

- **Amplitude** modulation
- Phase modulation
- Possibility to collect speckles from multiple points along the fiber.

Results

Speckle Pattern

Ground-Truth Prediction

Amplitude Modulation MNIST

Phase

Modulation

MNIST

Amplitude Modulation NotMNIST

Performance

Data-set	SSIM [%]
MNIST, phase modulation	82.65
MNIST, amp. modulation	84.43
NotMNIST, amp. mod.	72.78
Four locations, MNIST,	83.11
phase modulation	05.11

Future Work

- Generalizing to more complicated patterns, and locations
- Distributed communication network
- Focusing the light at the side of the fiber and using it for distributed imaging.

