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Abstract

The common maximum pulse repetition rate (PRR) of a

(over

reflectometric-based system is determined by its longest delay.

In DAS & Q-DAS, the PRR is bound by the system length (L):

Taking advantage of the sparse nature of a Q-DAS impulse
response, multiple pulse responses, generated from different
pulses, can be interleaved without overlapping, yielding an
enhanced PRR.

We term our methods Array Matched Interrogation (AMI) and
Coded Array Matched Interrogation (C-AMI) and demonstrate a
record interrogation rate of 5MHz over a 1km long system.

We were able to successfully identify ultrasonic acoustic waves

fscan = fe—max = Vg/ZL

12kHz) in the underwater medium at the far end of a

km fiber.
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Many sea mammals use acoustic
waves for communication and
allocation:
* The striped dolphins,
for example, use frequency
modulated whistles ranging to =
more than 20 kHz and echolocation clicks.

* The approximate frequency range of bottlenose dolphin
whistles is 0.2 to 24 kHz (Reynolds & Rommel, 1999).

Motivation

ne frequency range for echolocation clicks is 0.2 to 150
Hz (Reynolds & Rommel, 1999).

that are at a distance. As the dolphin moves closer to an

ne lower frequencies are used for echolocating objects
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Underwater ultrahigh scan-rate
quasi-distributed acoustic sensing system
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Fig. 1. A coherent quasi-distributed sensing system. PC: Polarization Controller. BPD: Balanced Photo-Detector.
FBG: Fiber Bragg Grating. AWG: Arbitrary Waveform Generator. AL = 20m ..

A fiber containing 26 evenly spaced FBGs was connected to the optical interrogator. The last two sections were
wrapped around a mandrel and placed inside a water tank. The two mandrels were subjected to external acoustic
signal generated by a submerged ultrasonic source (Teledyne UTS-9000). |
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result in non-overlapping returns.

Designing the system such that (M — DI|A| < Tspqn

Optical fiber with Fiber Bragg Gratings

M reflectors array

Demonstrated scan rate enhancement factor

object, it can increase the frequency of its echolocation to [
learn more about the object. ', Toc — fscan/fc—max S -
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